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18.8 Two-Parameter Models—Modeling Real 
Reactors with Combinations of Ideal Reactors

 

We now will see how a real reactor might be modeled by different combina-
tions of ideal reactors. Here, an almost unlimited number of combinations that
could be made. However, if we limit the number of adjustable parameters to
two (e.g., bypass flow rate, , and dead volume, 

 

V

 

D

 

), the situation becomes
much more tractable. After reviewing the steps in Table 18-1, choose a model
and determine if it is reasonable by qualitatively comparing it with the RTD
and, if it is, determine the model parameters. Usually, the simplest means of
obtaining the necessary data is some form of a tracer test. These tests have
been described in Chapters 16 and 17, together with their uses in determining
the RTD of a reactor system. Tracer tests can be used to determine the RTD,
which can then be used in a similar manner to determine the suitability of the
model and the value of its parameters.

In determining the suitability of a particular reactor model and the
parameter values from tracer tests, it may not be necessary to calculate the
RTD function 

 

E

 

(

 

t

 

). The model parameters (e.g., 

 

V

 

D

 

) may be acquired directly
from measurements of effluent concentration in a tracer test. The theoretical
prediction of the particular tracer test in the chosen model system is compared
with the tracer measurements from the real reactor. The parameters in the
model are chosen so as to obtain the closest possible agreement between the
model and experiment. If the agreement is then sufficiently close, the model is
deemed reasonable. If not, another model must be chosen.

The quality of the agreement necessary to fulfill the criterion “

 

sufficiently
close

 

” again depends on creativity in developing the model and on engineering
judgment. The most extreme demands are that the maximum error in the pre-
diction not exceed the estimated error in the tracer test, and that there be no
observable trends with time in the difference between prediction (the model)
and observation (the real reactor). In the 

 

Expanded Material 

 

on the CRE Web site
we illustrate how the modeling is carried out, we will now consider two differ-
ent models for a CSTR.

 

18.8.1 Real CSTR Modeled Using Bypassing and Dead Space

 

A real CSTR is believed to be modeled as a combination of an ideal CSTR with
a well-mixed volume 

 

V

 

s

 

, a dead zone of volume 

 

V

 

d

 

, and a bypass with a volu-
metric flow rate  (Figure 18-1). We have used a tracer experiment to evaluate
the parameters of the model 

 

V

 

s

 

 and . Because the total volume and volumet-
ric flow rate are known, once 

 

V

 

s

 

 and  are found,  and 

 

V

 

d

 

 can readily be
calculated.

 

18.8.1.1  Solving the Model System for C

 

A

 

 and X

 

(18-64)

We can solve for the concentration of A leaving the reactor

Creativity and
engineering

judgment are
necessary for model

formulation. �b

A tracer
experiment is used

to evaluate the
model parameters.

What is
sufficiently close?
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(18-60)

For a first-order reaction, a mole balance on 

 

V

 

s

 

 gives

 

C

 

A0

 

 

 

�

 

 

 

C

 

A

 

s

 

 

 

�

 

 

 

kC

 

A

 

s

 

V

 

s

 

 

 

�

 

 0 (18-61)

or, in terms of 

 

�

 

 and 

 

�

 

(18-62)

Substituting Equation (18-62) into (18-60) gives the effluent concentration of
species A:

(18-63)

We have used the ideal reactor system shown in Figure 18-1 to predict the
conversion in the real reactor. The model has two parameters, 

 

�

 

 and 

 

�

 

. The
parameter

 

 α

 

 is the dead zone volume fraction and parameter 

 

β

 

 is the fraction
of the volumetric flow rate that bypasses the reaction zone. If these parameters
are known, we can readily predict the conversion. In the following section, we
shall see how we can use tracer experiments and RTD data to evaluate the
model parameters.

 

18.8.1.2 Using a Tracer to Determine the Model Parameters 
in a CSTR-with-Dead-Space-and-Bypass Model

 

In Section 18.8.1.1, we used the system shown in Figure 18-2, with bypass flow
rate, , and dead volume, 

 

V

 

d

 

, to model our real reactor system. We shall inject
our tracer, 

 

T

 

, as a positive-step input. The unsteady-state balance on the
nonreacting tracer, 

 

T

 

, in the well-mixed reactor volume, 

 

V

 

s

 

, is

Figure 18-1 (a) Real system; (b) model system.

The model system
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In – out = accumulation

(18-64)

The conditions for the positive-step input are

A balance around junction point 2 gives

(18-65)

As before

Integrating Equation (18-64) and substituting in terms of 

 

�

 

 and 

 

�

 

 gives

(18-66)

Combining Equations (18-65) and (18-66), the effluent tracer concentration is

(18-67)

Tracer balance for
step input �sCT0  �  � s C Ts �  
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dt
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Figure 18-2 Model system: CSTR with dead volume and bypassing.
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We now need to rearrange this equation to extract the model parameters, 

 

�

 

and 

 

�

 

, either by regression (Polymath/MATLAB/Excel) or from the proper plot
of the effluent tracer concentration as a function of time. Rearranging yields

(18-68)

Consequently, we plot ln[

 

C

 

T

 

0

 

/ (

 

C

 

T

 

0

 

 

 

�

 

 

 

C

 

T

 

)] as a function of 

 

t

 

. If our model
is correct, a straight line should result with a slope of (1 

 

�

 

 

 

�

 

) /

 

τ

 

�

 

 and an inter-
cept of ln[1/(1 

 

�

 

 

 

�

 

)].

 

Example 18–4 Parameter Evaluation for a CSTR with Dead Space and Bypass

 

The elementary reaction

A 

 

�

 

 B C 

 

�

 

 D

is to be carried out in the CSTR shown schematically in Figure 18-2. There is both
bypassing and a stagnant region in this reactor. The tracer output for this reactor is
shown in Table E18-4.1. The measured reactor volume is 1.0 m

 

3

 

 and the flow rate to
the reactor is 0.1 m

 

3

 

/min. The reaction-rate constant is 0.28 m

 

3

 

/kmol

 

�

 

min. The feed
is equimolar in A and B with an entering concentration of A equal to 2.0 kmol/m

 

3

 

.
Calculate the conversion that can be expected in this reactor (Figure E18-4.1).

The entering tracer concentration is C

 

T0

 

 = 2000 mg/dm

 

3

 

.

 

Solution

 

One of the keys is to determine 

 

what

 

 to plot as function of 

 

what

 

 in order to deter-
mine the system parameters, e.g., 

 

�

 

b

 

, 

 
α

 

, 

 
β.

 Recalling Equation (18-68)

(18-68)
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Equation (18-68) suggests that we construct Table E18-4.2 from Table E18-4.1 and
plot 

 

C

 

T

 

0

 

/ (

 

C

 

T

 

0

 

 

 

�

 

 

 

C

 

T

 

) as a function of time on semilog paper. Using this table we get
Figure E18-4.2. 

We can find 

 

α

 

 and 

 

β

 

 from either a semilog plot, as shown in Figure E18-4.2, or by
regression using Polymath, MATLAB, or Excel.
The volumetric flow rate to the well-mixed portion of the reactor, , can be deter-
mined from the intercept, 

 

I

 

The volume of the well-mixed region, 

 

V

 

s

 

, can be calculated from the slope, 

 

S

 

,

 

T

 

ABLE

 

 E18-4.2  

 

P

 

ROCESSED

 

 D

 

ATA

 

t

 

 (min) 4 8 10 14 16 18

2 3 4 6 8 10

Figure E18-4.2 Response to a step input.
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We now proceed to determine the conversion corresponding to these model
parameters.

1. Balance on reactor volume Vs :

[In] � [Out] � [Generation] � [Accumulation]

� 0 (E18-4.1)

2. Rate law:

Equalmolar feed 

 (E18-4.2)

3. Combining Equations (E18-4.1) and (E18-4.2) gives

(E18-4.3)

Rearranging, we have

 � CAs � CA0 � 0 (E18-4.4)

Solving for CAs yields

(E18-4.5)

4. Balance around junction point 2:

(E18-4.6)

Rearranging Equation (E18-4.6) gives us

(E18-4.7)

5. Parameter evaluation:

(E18-4.8)

Substituting into Equation (E18-4.7) yields

�s CA0 �s CAs� rAsVs�

rAS� kCAsCBs�

CAs� CBs�

rAs kC 2
As��

�s CA0 �s CAs� kCAs
2 Vs� 0�

ts kCAs
2

CAs
1� 1 4ts kCA0��

2ts k
------------------------------------------------�

In[ ] Out[ ]�

�bCA0 �sCAs�[ ] �0CA[ ]�

CA
�0 �s�

�0
---------------  C A 0 

�
 

s 
�

 
0

 ----   C A s ��

�s 0.8 �0 0.8( ) 0.1 m3 min�( ) 0.08 m3 min�� � �

Vs �t( ) �0 7.0 min( ) 0.1 m3 min�( ) 0.7 m3� � �

ts
Vs

�s
----- 8.7 min� �

CAs
1 4ts kCA0� 1�

2ts k
------------------------------------------�

1 4( ) 8.7 min( ) 0.28 m3 kmol min��( ) 2 kmol m3�( )� 1�

2( ) 8.7 min( ) 0.28 m3 kmol min��( )
--------------------------------------------------------------------------------------------------------------------------------------------�

0.724 kmol m3��

Finding the
conversion CA

0.1 0.08�
0.1

------------------------  2 ( ) 0.8 ( ) 0.724 ( ) � 0.979 � � 
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The predicted conversion for the real reactor using the CSTR dead volume and
bypassing is 

If the real reactor were acting as an ideal CSTR, the conversion would be

(E18-4.9)

(E18-4.10)

 

Analysis:

 

 In this example we used a combination of an ideal CSTR with a dead vol-
ume and bypassing to model a nonideal reactor. If the nonideal reactor behaved as an
ideal CSTR, a conversion of 66% was expected. Because of the dead volume, not all
the space would be available for reaction; also, some of the fluid did not enter the
space where the reaction was taking place and, as a result, the conversion in this non-
ideal reactor was only 51%.

 

Example web 18–2 Two CSTRs with interchange

 

The elementary first-order liquid-phase reaction

 A B

is carried out in a nonideal CSTR with 

 

k

 

 = 0.03 min

 

-1

 

. The flow patterns seem to
approximate two CSTRs with interchange (Figure web E18-2.1). Species A enters the
reactor at a rate of 25 dm

 

3

 

/min and a concentration of 0.02 mo1/dm

 

3

 

. The total reac-
tor volume is 1000 dm

 

3

 

. The results of a pulse tracer test are shown in Table
web 18-2.1 Using the results of these tests, determine the conversion.

X 1 0.979
2.0

-------------� 0.51� �

CA
1 4tkCA0� 1�

2tk
----------------------------------------�

CA
1 4 10( ) 0.28( ) 2( )� 1�

2 10( ) 0.28( )
----------------------------------------------------------- 0.685� �

Xmodel 0.51�

XIdeal 0.66� X 1
CA

CA0
--------� 1 0.685

2.0
-------------� 0.66� � �

k   ⎯⎯→  

� V
�0
---- 1000 dm3

25 dm3 min�
------------------------------- 40 min� � �

C10 2000 mg dm3
��

1

2

n0 n0

Figure web E18-2.1
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Solution

 

A tracer balance yields
(mass added at 

 

t

 

 = 0) = (mass out over all time)

(Web 18-1.1)

(Web 18-1.2)

We could also have evaluated Equation (web E18-1.2) by taking the area under the
curve of a plot of 

 

C

 

(

 




 

) versus 

 




 

 (Figure web E18-2.2)
We will now determine the decay constants, 

 

m

 

1

 

 and 

 

m

 

2

 

, from which the fraction
exchanged, 

 

β

 

, can be determined. The dimensionless concentration is obtained from
Equation (web 18-75)

(Web E18-1.3)

 

T

 

ABLE

 

 

 

WEB

 

 18-2.1

 

t (min) C (mg/dm

 

3

 

)

 

0 2000
20 1050
40 520
60 280
80 160

120 61
160 29
200 16.4
240 10.0
280 6.4
320 4.0

 

t

 

 (min) 0.0 20 40 60 80 120 160 200 240 280 320

0.0 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0

 

C

 

2000 1050 520 280 160 61 29 16.4 10.0 6.4 4.0

 

C

 

/

 

C

 

10

 

1.0 0.525 0.26 0.14 0.08 0.03 0.0145 0.0082 0.005 0.0032 0.002


 t ���

C10�V �0 C t( ) td
0

�

��

�
1

C10
------- C 
( ) 
d

0

�

� C 
( )
C10

---------- 
d
0

�

�� �

�
b1

3
---- f�1 4f�2 2f�3 4f�4 f�5� � � �( )�

b2

3
----� f�1 4f�2 2f�3 4f�4 f�5 4 f�6 f�7� � � � � �( )

0.5
3

------- 1 4 0.525( ) 2 0.26( ) 4 0.14( ) 0.08� � � �[ ]�

1
3
--- 0.08 4 0.03( ) 2 0.0145( ) 4 0.0082( )� � �[�

2 0.005( ) 4 0.0032( ) 0.002� � ]�

0.71 0.09� 0.80� �

C
C10
-------

�m1 � 1� �( )e
m2


�m2 � 1� �( )e
m1


�

� m1 m2�( )
---------------------------------------------------------------------------------------------�

m2 m1�
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Plotting the ratio C(t)/C10 as a function of 
 on semilog coordinates, we get the graph
shown in Figure web E18-1.3. At long times, the first term containing m2 in the expo-
nent is negligible with respect to the second term. Consequently, if we extrapolate
the portion of the curve for long times back to 
 = 0, we have 

(Web E18-2.4)

Solving for β, we obtain β = 0.1. The two parameters for this model are then

 and 

Substituting for τk, α, and β in Equation (18-69) yields

(Web E18-2.5)

(Web E18-2.6)

So X = 0.51. For a single ideal CSTR,

(Web E18-2.7)

2000

1000

1200

800

C
(θ

)

θ

400

0 2 4 6 8

Area
C10

= α

Figure web E18-2.2 Dimensionless tracer concentration as a 
function of dimensionless time

Intercept I
�m2 � 1� �

� m1 m2�( )
-----------------------------� 0.066�� �

0.066 0.8( ) 1.44�( )� � 1� �
0.8( ) 0.434� 1.44�( )�[ ]

-------------------------------------------------------------�

� 0.8� � 0.1�

�k 40 min( ) 0.03 min 1�( ) 1.2� �

CA

CA0
-------- 1 X� 1

1 � ��k �
2

� 1 ��( )�k�
---------------------------------�� �

--------------------------------------------------------------------� �

1 X� 1

1 0.1 0.8( ) 1.2( ) 0.1( )2

0.1 1 0.8�( ) 1.2( )�
----------------------------------------------�� �

----------------------------------------------------------------------------------------------------�

X �k
1 �k�
-------------- 1.2

2.2
------- 0.55� � �
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For a single ideal plug-flow reactor,

(Web E18-2.8)

(X model � 0.51) 	 (X CSTR � 0.55) 	 (X PFR) � 0.70

Other Models. In Section 18.8.1 it was shown how we formulated a model
consisting of ideal reactors to represent a real reactor. First, we solved for the
exit concentration and conversion for our model system in terms of two
parameters, � and �. We next evaluated these parameters from data on tracer
concentration as a function of time. Finally, we substituted these parameter
values into the mole balance, rate law, and stoichiometric equations to pre-
dict the conversion in our real reactor.

To reinforce this concept, we will use one more example.

18.8.2 Real CSTR Modeled as Two CSTRs with Interchange

In this particular model there is a highly agitated region in the vicinity of the
impeller; outside this region, there is a region with less agitation (Figure 18-3).
There is considerable material transfer between the two regions. Both inlet and
outlet flow channels connect to the highly agitated region. We shall model the

X 1 e �k�
� 1 e 12�

� 0.70� � �

1.0
0.8
0.6
0.5
0.4
0.3

0.2

0.1
0.08
0.06
0.05
0.04
0.03

0.02

m1 = – 0.434

mz = – 1.44

Ι = 0.066

0.01
0.008
0.006
0.005
0.004
0.003

0.002

0.001
0 1 2 3

θ
4 5 6 7

C C
10

Figure web E18-1.3 Dimensionless tracer concentration as a 
function of dimensionless time
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highly agitated region as one CSTR, the quieter region as another CSTR, with
material transfer between the two.

18.8.2.1 Solving the Model System for CA and X

Let � represent that fraction of the total flow that is exchanged between reac-
tors 1 and 2; that is,

and let � represent that fraction of the total volume, V, occupied by the highly
agitated region:

Then

The space time is

As shown on the CRE Web site Professional Reference Shelf R18.2, for a first-order
reaction, the exit concentration and conversion are

(18-69)

and

(18-70)

where CA1 is the reactor concentration exiting the first reactor in Figure 18-3(b).

The model system

(a) (b)

V1
V2

CA1

CA1

CA2

v0

v

v

v

Figure 18-3 (a) Real reaction system; (b) model reaction system.

�1 ��0�

Two parameters:
� and �

V1 �V�

V2 1 ��( )V�

t V
�0
----�

CA1
CA0

1 � �tk �2 � 1 ��( ) tk�[ ]�{ }�� �
----------------------------------------------------------------------------------------�

Conversion for
two-CSTR model

X 1
CA1

CA0
--------�

� �tk�( ) � 1 ��( ) tk�[ ] �2�

1 � �tk� �( ) � 1 ��( ) tk�[ ] �2�
----------------------------------------------------------------------------------� �
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18.8.2.2 Using a Tracer Experiment to Determine the Model Parameters in a 
CSTR with an Exchange Volume

The problem now is to evaluate the parameters � and � using the RTD data for
the reaction system shown in Figure 18-3. A mole balance on a tracer pulse
injected at t � 0 for each of the tanks is 

(18-71)

and CT1 is the measured tracer concentration existing the real reactor. The
tracer is initially dumped only into reactor 1, so that the initial conditions
CT10 � NT0 /V1 and CT20 � 0.

Substituting in terms of �, �, and τ, we arrive at two coupled differential
equations describing the unsteady behavior of the tracer that must be solved
simultaneously.

Analytical solutions to Equations (18-73) and (18-74) are given on the CRE Web
site, in Appendix A.3 and in Equation (18-75), below. However, for more com-
plicated systems, analytical solutions to evaluate the system parameters may
not be possible.

(18-75)

By regression on Equation (18-75) and the data in Table E18-4.2 or by an
appropriate semilog plot of CT1 /CT10 versus time, one can evaluate the model
parameters � and �.

Unsteady-state
balance of inert

tracer

Reactor 1:

Reactor 2:

Accumulation Rate in Rate out��

V1  
dC
 

T
 

1 
dt
 ---------- � 1 C T 2 � 0 C T 1 � 1 C T 1 � ( ) ��  

V

 

2   
dC
 

T
 

2 
dt
 ---------- � 1 C T 1 � 1 C T 2 �� 18-72( )

See Appendix A.3
for method of

solution

t�  
dC
 

T
 

1 
dt
 ---------- � C T 2 1 �� ( ) C T 1 ��  

t

 

1

 

��

 

( )  
dC
 

T
 

2 
dt
 ---------- � C T 1 � C T 2 ��

(18-73)

(18-74)

where

CT1

CT10
---------

⎝ ⎠
⎜ ⎟
⎛ ⎞

pulse

�m1 � 1� �( ) em2 t t�
�m2 � 1� �( ) em1 t t�

�

� m1 m2�( )
-----------------------------------------------------------------------------------------------------�

m1   m 2 ,  1 �� �� 
2

 
�

 
1

 
��

 
( )

 -------------------------   1 � 1 4 �� 1 �� ( ) 
1

 
�� �

 
2

 
�

 
( )

 ----------------------------- ���  
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18.9

 

Expanded Material on the Web Site:

 

 Use of 
Software Packages to Determine the Model 
Parameters

 

If analytical solutions to the model equations are not available to obtain the
parameters from RTD data, one could use ODE solvers. Here, the RTD data
would first be fit to a polynomial to the effluent concentration–time data and
then compared with the model predictions for different parameter values.

An example showing how to evaluate the model parameters for a CSTR
with Bypassing and dead volume (

 

http://www.umich.edu/~elements/5e/18chap/
learn-cd18-3.html

 

).

 

Example 18–4 CSTR with Bypass and Dead Volume

 

(a)

 

 Determine parameters 

 

�

 

 and 

 

�

 

 that can be used to model two CSTRs with inter-
change using the tracer concentration data listed in Table E18-4.1. The tracer was
“thrown/injected” into the reactor at 

 

t

 

 = 0.

 

(b)

 

 Determine the conversion of a first-order reaction with 

 

k

 

 

 

�

 

 0.03 min

 

�

 

1

 

 and 

 

τ

 

 

 

�

 

 40 min.

 

Solution

 

First, we will use Polymath to fit the RTD to a polynomial. Because of the steepness
of the curve, we shall use two polynomials. 

For  min

 

C

 

Te

 

 

 

�

 

 2000 

 

�

 

 59.6

 

t

 

 

 

�

 

 0.642

 

t

 

2

 

 

 

�

 

 0.00146

 

t

 

3

 

 

 

�

 

 1.04 

 

�

 

 10

 

�

 

5

 

t

 

4

 

(E18-4.1)

For  min

 

C

 

Te

 

 

 

�

 

 921 

 

�

 

 17.3

 

t

 

 

 

�

 

 0.129

 

t

 

2

 

 

 

�

 

 0.000438
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where 
 

C
 

Te

 
 is the exit concentration of tracer determined experimentally. Next we

would enter the tracer mole (mass) balances Equations (18-68) and (18-69) into an
ODE solver. The Polymath program is shown in Table E18-4.2. Finally, we vary the
parameters 
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 and 
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 and then compare the calculated effluent concentration 
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T

 

1

 

 with
the experimental effluent tracer concentration 
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Te

 

. After a few trials, we converge on
the values 
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 0.8 and 

 

�

 

 

 

�

 

 0.1. We see from Figure E18-4.1 and Table E18-4.3 that
the agreement between the RTD data and the calculated data is quite good, indicat-
ing the validity of our values of 

 

�

 

 and 

 

�

 

. We now substitute these values in Equation
(18-70), and as shown on the CRE Web site, the corresponding conversion is 51% for
the model system of two CSTRs with interchange
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Trial and error using
software packages
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(18-70)

Comparing models, we find

 (Xmodel � 0.51) 	 (XCSTR � 0.55) 	 (XPFR � 0.7)

TABLE E18-4.2  POLYMATH PROGRAM: TWO CSTRS WITH INTERCHANGE

X 1
CA1

CA0
--------�

� �tk�( ) � 1 ��( ) tk�[ ] �2�

1 � �tk� �( ) � 1 ��( ) tk�[ ] �2�
----------------------------------------------------------------------------------� �

tk 40 min( ) 0.03 min 1�( ) 1.2� �

X 0.1 0.8( ) 1.2( )�[ ] 0.1 1 0.8�( ) 1.2( )�[ ] 0.1( )2�

1 0.1 0.8( ) 1.2( )� �[ ] 0.1 1 0.8�( ) 1.2( ) 0.1( )2��[ ]
--------------------------------------------------------------------------------------------------------------------------�

X 0.51�

2.0

1.6

0.8

0.4

Scale:

Y: 10-3

KEY:

CT1

CTe 1.2

0.0
0.0 40.0

t (min)

80.0 120.0 160.0 200.0

(g/m3)

Figure E18-4.1 Comparison of model and experimental exit tracer concentrations.
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Analysis: For the two-parameter model chosen, we used the RTD to determine the
two parameters’ dead volume and fraction of fluid bypassed. We then calculated the
exit trace concentration using the ideal CSTR balance equations but with a lesser
reactor volume and a smaller flow rate through the reactor and compared it with the
experimental data. 

TABLE E18-4.3  COMPARING MODEL (CT1) WITH EXPERIMENT (CTe)

Two CSTRs with
interchange
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